Symplectic, BVD, and Palindromic Approaches to Discrete-Time Control Problems¶
نویسندگان
چکیده
We give several different formulations for the discrete-time linear-quadratic control problem in terms of structured eigenvalue problems, and discuss the relationships among the associated structured objects: symplectic matrices and pencils, BVD-pencils and polynomials, and the recently introduced classes of palindromic pencils and matrix polynomials. We show how these structured objects can be transformed into each other, and also how their eigenvalues, eigenvectors and invariant/deflating subspaces are related.
منابع مشابه
Exact Implementation of Multiple Initial Conditions in the DQ Solution of Higher-Order ODEs
The differential quadrature method (DQM) is one of the most elegant and useful approximate methods for solving initial and/or boundary value problems. It is easy to use and also straightforward to implement. However, the conventional DQM is well-known to have some difficulty in implementing multiple initial and/or boundary conditions at a given discrete point. To overcome this difficulty, this ...
متن کاملNew Results for Time Reversed Symplectic Dynamic Systems and Quadratic Functionals
In this paper, we examine time scale symplectic (or Hamiltonian) systems and the associated quadratic functionals which contain a forward shift in the time variable. Such systems and functionals have a close connection to Jacobi systems for calculus of variations and optimal control problems on time scales. Our results, among which we consider the Reid roundabout theorem, generalize the corresp...
متن کاملA Novel Approach to Designing of Chattering-Free Sliding-Mode Control in Second-Order Discrete-Time Systems
In this paper, a chattering-free sliding-mode control is mainly proposed in a second-order discrete-time system. For achieving this purpose, firstly, a suitable control law would be derived by using the discrete-time Lyapunov stability theory and the sliding-mode concept. Then the input constraint is taken into account as a saturation function in the proposed control law. In order to guarantee ...
متن کاملPalindromic Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations
Palindromic polynomial eigenvalue problems and related classes of structured eigenvalue problems are considered. These structures generalize the concepts of symplectic and Hamiltonian matrices to matrix polynomials. We discuss several applications where these matrix polynomials arise, and show how linearizations can be derived that reflect the structure of all these structured matrix polynomial...
متن کاملSymplectic Structure of Jacobi Systems on Time Scales
In this paper we study the structure of the Jacobi system for optimal control problems on time scales. Under natural and minimal invertibility assumptions on the coefficients we prove that the Jacobi system is a time scale symplectic system and not necessarily a Hamiltonian system. These new invertibility conditions are weaker than those considered in the current literature. This shows that the...
متن کامل